Learning-based Rule-Extraction from Support Vector Machines
نویسندگان
چکیده
In recent years, support vector machines (SVMs) have shown good performance in a number of application areas, including text classification. However, the success of SVMs comes at a cost – an inability to explain the process by which a learning result was reached and why a decision is being made. Rule-extraction from SVMs is important for the acceptance of this machine learning technology, especially for applications such as medical diagnosis. It is crucial for the users to understand how the system makes a decision. In this paper, a novel approach for rule-extraction from support vector machines is presented. This approach handles rule-extraction as a learning task, which proceeds in two steps. The first is to use the labeled patterns from a data set to train an SVM. The second step is to use the generated model to predict the label (class) for an extended data set or different, unlabeled data set. The resulting patterns are then used to train a decision tree learning system and to extract the corresponding rule sets. The output rule sets are verified against available knowledge for the domain problem (e.g. a medical expert), and other classification techniques, to assure correctness and validity of rules.
منابع مشابه
A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملRule Extraction from Support Vector Machines
Support vector machines (SVMs) are learning systems based on the statistical learning theory, which are exhibiting good generalization ability on real data sets. Nevertheless, a possible limitation of SVM is that they generate black box models. In this work, a procedure for rule extraction from support vector machines is proposed: the SVM+Prototypes method. This method allows to give explanatio...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملRule extraction from support vector machines based on consistent region covering reduction
Due to good performance in classification and regression, support vector machines have attracted much attention and become one of the most popular learning machines in last decade. As a black box, the support vector machine is difficult for users’ understanding and explanation. In many application domains including medical diagnosis or credit scoring, understandability and interpretability are ...
متن کامل